
Corporate Backgrounder

Microsoft’s Object Technology Strategy:
 Software Without Limits

Systems
without limits

Tools
without limits

Applications
without limits

March, 1994
(0394 Part No. 098-55163)

Contents

Executive Summary. 2

Overview. 3
Object technology: the future begins now 3
What is object technology, and how can it help solve real business problems? 4
Object-enabling system software vs. object-oriented programming 4

Object-enabling System Software. 5
Object Linking and Embedding 2.0 and the Component Object Model 6
Component software 7
OLE Custom Controls 8
Other features of OLE 9

Distributed Object Systems.9
Example: a real-time stock-quote object 10
OLE and cross-platform capabilities 11
Other object model specifications 11
The Open Process 12

The Evolution of Microsoft Windows. 12
Exposing system services as objects 12
Microsoft’s strategy: pioneering object technology innovations 14

Object Technology and Microsoft Products . 15
Object-enabling system software innovations 15
Desktop applications that make full use of OLE 15
Object-oriented programming languages and development environments 15
Object technology: continuing innovation 16

Conclusion. 16
For more information 17
The Microsoft Developer Network 17

Appendix A: A Discussion of Object-oriented Programming Languages.18
Example: an object-oriented human-resource application 18
Application frameworks 19
Implementation inheritance and class hierarchies 20

Appendix B: Object-oriented Programming: How OLE and COM Relate. 22
Using OLE Automation to integrate component software 23
Developing your own OLE applications and component objects 24
Using object-oriented programming tools to
 reduce development time 25
For more technical information 25

Appendix C: Glossary of Terms. 26

Microsoft’s Object Technology Strategy:
Software Without Limits

1

Executive Summary

Computers must make it easy for corporations to access and use strategic information, regardless of its
source or location. This goal forms the basis for Microsoft’s vision of Information at Your Fingertips,
and new innovations in object-oriented software technology are a significant step towards the realization
of this vision.

Object technology will improve the ability of corporate information departments to deliver strategic
information systems at lower costs, and will help businesses compete in a global economy. Microsoft, as
a leader in object technology, is pioneering advances in application development environments, desktop
applications, and system software. Corporations can receive the benefits of Microsoft object technology
today through applications and development tools supporting Object Linking and Embedding (OLE), a
breakthrough in object-enabling system software.

The primary benefits of object-oriented programming are directed at programmers. OLE, on the other
hand, brings the benefits of object technology directly to end-users, while also addressing the needs of
corporate developers and system integrators. OLE 2.0 is available today for the Microsoft Windows TM
family of operating systems, and it will soon be available for the Apple® Macintosh® platform. In the
future, software components based on OLE will also be able to interoperate across all major versions of
UNIX®, VMS®, and even the MVS operating system. In fact, because OLE is based on an advanced
underlying object architecture called the Component Object Model (COM), OLE forms the basis for
Microsoft’s strategy to evolve the Windows family into fully object-oriented operating systems.
Independent software vendors, system integrators and corporate information departments can begin
implementing solutions today using OLE, and be assured that any OLE 2.0-enabled application available
today will transparently integrate with the distributed, object-based system services that will be
incorporated into the Windows family of operating systems.

But the future begins today: OLE is the most advanced, cross-platform system object model available,
and software components based on OLE are already revolutionizing the software industry.

Microsoft’s Object Technology Strategy:
Software Without Limits

Microsoft’s Strategy for Delivering Object Technology Innovation

¨ Deliver Value Today
Provide the best and most practical object solution for the customer
through innovative system software.

¨ Provide the Most Comprehensive Cross-Platform Support
Ensure that new object innovations interoperate across multiple
platforms
and incorporate market-driven standards.

¨ Provide the Most Open Solution
Ensure that new object innovations are published and refined through
the Open Process, fostering broad industry participation and
innovation.

¨ Protect Existing Customer Investments
Future versions of Windows will provide extensive OLE services. Today’s
OLE-enabled applications will inherit tomorrow’s capabilities.

2

Overview

Increasingly, businesses are using information system technology as a strategic tool to provide long-term
competitive advantage. The growing role of information systems as an integral part of corporate strategy
has been enabled by advances in computing technology, and has been driven by the dynamic nature of a
global economy. As corporations adjust to increased competitive pressures, they have turned to
information technology not only to reduce costs and improve workflow management, but also to deliver

better products and service
to their customers. At the
same time, advances in
personal computer hardware
and software technology,
such as client-server
computing, have enabled
information systems to meet
these new needs.

The strategic use of information technology, however, has also placed a growing burden on corporate
information departments. These departments are now asked to deploy better systems at a faster pace and,
at the same time, keep up with rapid advances in software technology. While various development tools
have helped ease the burden to some extent, most corporate information departments still face a growing
application backlog, and deal on a day-to-day basis with complex programming and system deployment
issues. Object Technology, however, has the potential to offer substantial benefits to information
departments as they deploy new and innovative applications. These applications will, in turn, help
corporations meet the challenges of a dynamic, competitive economy.

Object technology: the future begins now

In developing computer software, object technology offers a different model from traditional structured
programming and design, which is based on functions and procedures. In simplified terms, object
technology is a way to develop software by building self-contained modules that can easily be replaced,
modified and reused. Object technology will empower information departments to deliver more flexible,
higher quality systems, and it will reduce the time and resources required for system programming,
implementation and maintenance.

Imagine building an innovative billing system to handle new international subsidiaries by assembling 75
percent of the new application from existing components, and delivering that system in a fraction of the
time it would ordinarily have taken to develop. Imagine being able to integrate this billing system
quickly and easily with global network-based information resources such as database and messaging
services, even though these systems may reside on a variety of different hardware and software platforms.
And imagine extending the system to incorporate charting and statistical sales analysis by simply buying
packaged products and plugging them into the new system. Although this might sound unattainable,
Microsoft’s object-enabling system software, OLE, is making all of this possible.

Microsoft’s Object Technology Strategy:
Software Without Limits

The strategic use of information technology has placed a
growing burden on corporate information departments. These
departments are now asked to deploy better systems at a faster
pace and, at the same time, keep up with rapid advances in
software technology.

3

An object is a self-contained software module that consists of a set of data and its associated processing
information. A significant benefit of object technology is that an object encapsulates all of the data and
processing details, hiding its inner complexity from programmers and users. This makes it easy to use
objects once they are defined. Objects are also more easily protected from misuse, since they can only be
accessed through well defined interfaces, called methods. In addition, since all implementation detail is
hidden from other objects (other software modules), it is easy to modify an object’s internal details
without affecting any other objects in the system. As a result, object-based systems are much more
flexible and easier to maintain than their procedural-based counterparts.

Microsoft’s Object Technology Strategy:
Software Without Limits

Anatomy of an Object

An object is a self-contained software module that
encapsulates both data and processing details.

An Object-oriented Billing System

4

Object-enabling system software vs. object-oriented programming

The two areas of object technology that will have a growing impact on business systems are the
following:

 Object-enabling system software
 Object-oriented programming languages

The issues and goals of object technology differ for the two areas, although some of the basic concepts
are the same. In fact, the term object technology is hard to precisely define because it is so often applied
to each area without taking the differences into account. Object-oriented programming languages and
development tools are useful for building self-contained, custom applications by creating object
definitions in the form of source code. These language-based object definitions can be shared and reused
in different applications. Object-oriented programming languages, however, do not provide a means for
separate applications to be integrated with other custom applications or packaged software. They do not
fulfill the need for diverse objects, supplied by any company, written in any programming language, to
freely interact. To fulfill this critical need, object-enabling technology must also be incorporated into
system software, and applications must be designed to use these system software capabilities.

Microsoft’s Object Technology Strategy:
Software Without Limits

Objects hide their inner details from programmers and
users. As a result, programmers and users can be more
productive, since they can use objects without learning
their complexities. Objects can also be easily modified or
replaced without affecting other objects in the system.

5

Object-enabling System Software

The role of system software in object technology innovations is critical, and the issues are complex.
While object-oriented programming can be used to build individual applications that run as a single
process, system software must provide a bridge between diverse applications, addressing the following
critical needs:

 The need to smoothly integrate objects written by different companies using different programming
languages

 The need for an overall object model to facilitate object communication across application and
machine boundaries (i.e. across a network)

 The need to enhance and upgrade objects autonomously, without disrupting the operation of a
distributed system

As organizations optimize and re-engineer their business processes, they need to be able to fully integrate
a variety of information, applications and systems in a flexible, work-flow driven manner. An object-
oriented system environment makes this possible. In such an environment, virtually everything is

accomplished by a large
number of objects that
interact with each other to
perform work. Even a
simple operation such as
dragging a work form out of
an application and onto a
printer icon or message
outbox can involve dozens
of objects communicating
with one another. With

many objects that need to cooperate with each other, it is important to have a well-designed object model
that formally defines what objects are and also defines the rules of object interaction. This is the role of
object-enabling system software, since it defines the way autonomous objects interact with the outside
world, not just the way object classes within a given program are implemented.

If designed properly, object-enabling system software makes objects useable and reuseable across
application boundaries. The object-enabling system software ensures that objects written by different
programmers from different companies behave in a well-known and consistent manner--without
constricting how programmers implement different objects. In more technical terms, the object-enabling
system software defines a binary object interface that is independent of programming language. Such a
model also defines a mechanism to ensure that connections between objects are valid, even as objects in a
distributed system are individually upgraded or replaced. Object-oriented programming languages, on
the other hand, define a programming language (source code) standard, making their objects dependent
on both language and implementation. These languages assume that when an object is upgraded,
dependent applications can be recompiled and re-distributed simultaneously. This is unrealistic in a
distributed system, where components are typically supplied by different companies and different
programming teams. Unfortunately, some object systems (such as IBM SOM/DSOM, and the Apple
OpenDocTM specification) attempt to straddle the border between a true system object model and object-
oriented programming technology. The result is an object system that offers some benefits, but lacks the
robust, binary object standard and version management that is necessary to achieve true application
integration using components from multiple vendors.

Microsoft’s Object Technology Strategy:
Software Without Limits

As organizations optimize and re-engineer their business
processes, they need to be able to fully integrate a variety of
information, applications, and systems in a flexible, work-flow
driven manner. An object-oriented system environment makes
this possible.

6

To say that the advantages of a robust, system software object model are significant is to understate their
importance. With such object-enabling system software:

 Users can manipulate objects that represent any information including text, graphics, reports, and
even multimedia clips, across application boundaries, no matter who designed the object or what
language or development tool was used to program the object.

 Through a standard programmatic interface based on the system object standard, off-the-shelf,
packaged objects can communicate with each other and be integrated into complete line-of-business
solutions. This capability is called component software. Component software offers a more efficient
and productive model for the software industry, and will dramatically reduce the programming effort
and time required to deliver new business solutions.

Increasingly, corporations, system integrators and independent software vendors are discovering that
object-oriented development languages and tools can offer programming benefits, but without robust,
object-enabling system software, the promises of object technology will largely remain unrealized. This
is not to say that object-oriented programming languages are not beneficial. The scope of issues these
languages attempt to address (ease of development effort through maximum code reuse), however, is
different than the scope of issues addressed by object-enabling system software. In fact, developers can

use these two types of
object technology together,
using object-oriented
programming languages to
build component objects
based on the system object
model.

In the following pages, you will see how Microsoft, working closely with other industry leaders, has
designed object-enabling system software that is already beginning to revolutionize the software industry,
bringing the benefits of object technology not only to programmers, but also directly to end users.

Object Linking and Embedding 2.0 and the Component Object Model

OLE 2.0 is a breakthrough in object-enabling system software. OLE is based on the Component Object
Model (COM), an underlying system software object model that allows complete interoperability
between objects that are written by different companies and/or in different programming languages.
These objects can be purchased, replaced, enhanced and reused at any time during the business-system
life cycle. The primary responsibility of the Component Object Model is to ensure that objects behave in
a well-known and consistent manner without constricting how programmers implement different objects.
The Component Object Model accomplishes this by defining a binary interface for objects that is
independent of any programming language. Objects conforming to the Component Object Model can
communicate with each other without being programmed with specific information about each other’s
implementations.

Objects that are written to support the Component Object Model are collectively called component
objects. Every feature of OLE depends on the Component Object Model to provide basic inter-object
communication. In other words, the Component Object Model provides the "plumbing and wiring" of
OLE. Using OLE, for example, a spreadsheet object provided by one vendor can be seamlessly
embedded into a word processing document created by an application from another vendor. The

Microsoft’s Object Technology Strategy:
Software Without Limits

Increasingly, corporations, system integrators and independent
software vendors are discovering that object-oriented
development languages and tools can offer programming
benefits, but without robust, object-enabling system software,
the promises of object technology will largely remain
unrealized.

7

spreadsheet and word processor don’t need to know anything about each other’s implementation, they
only need to know how to connect through the interface provided by OLE.

OLE is a set of object services built on top of the Component Object Model. While many of these
services are related to compound documents, OLE is much more than a compound document architecture.
OLE provides a robust platform for building custom business applications that can be easily integrated
with other business applications as well as with packaged software, whether the applications execute on a
single machine or are distributed across a network.

Component software

Microsoft’s Object Technology Strategy:
Software Without Limits

OLE Automation

Pictured above, an accounting application uses OLE
Automation to send commands to a packaged
spreadsheet application to update a table of sales
figures. It then uses the spreadsheet application to
create a chart and automatically insert the chart object
into a quarterly report.

8

OLE Automation allows an application to take advantage of services provided by other OLE-enabled
applications. These services can vary widely from application to application, but they are provided

through a standard object
interface. The interface
is used by software
vendors to expose any
application-specific
capability through a
cross-application, object-
based interface. In this
way, corporate
developers and system

integrators use traditional programming languages and development tools to write applications that
access these capabilities. Today, such tools include Microsoft Visual Basic, Microsoft Visual C++, and
many third-party development tools as well. Even more development tools will soon be supporting OLE
Automation programming capability.

As an example, a custom accounting application can use OLE 2.0 Automation to activate a packaged

spreadsheet application, fill in and format spreadsheet cells, then use the spreadsheet application charting
engine to create a graph for a quarterly report. Through OLE Automation, the graph can be
automatically embedded into the quarterly report before the report is printed for distribution.

As this example shows, corporate developers and system integrators can use OLE Automation to quickly
assemble larger, custom business solutions using packaged, component software as building blocks. OLE
Automation allows developers to easily integrate custom software with any component software,
including productivity applications, packaged vertical-market applications, and any OLE-enabled
application or development tool. In short, OLE breaks down the barriers between different types of
software and allows any packaged or custom application to be programmed to communicate with other
applications to achieve a business solution.

OLE Custom Controls

Microsoft’s Object Technology Strategy:
Software Without Limits

OLE Automation breaks down the barriers between different
types of software and allows any packaged or custom
application to be programmed to communicate with other
applications to achieve a business solution.

Component Software

Through OLE, packaged applications can be integrated
with custom software to form complete solutions. The
use of component software will significantly reduce the
programming effort required to deliver new systems,
while increasing system quality and flexibility.

9

Today, Microsoft Visual Basic provides a specific class of objects called Visual Basic custom controls
(VBX’s). Visual Basic custom controls are an example of the benefits of component software. Hundreds
of Visual Basic custom controls are commercially available, providing a wide range of services such as
report writing, data access and messaging services. These controls can be obtained from many different
companies and easily incorporated into any application written in Visual Basic. While the VBX
architecture has been rapidly accepted by developers, it was not designed to be an open, standard
interface.

The VBX architecture is closely tied to the Visual Basic design environment, making it difficult for
existing Visual Basic custom controls to work with other development tools, applications and objects.
Thus, a particular Visual Basic custom control cannot be used on multiple hardware platforms, multiple
operating system platforms, or in multiple development environments.

OLE Custom Controls, however, do not have these shortcomings. By merging the benefits of OLE with
the existing VBX architecture, Microsoft is providing corporate developers, system integrators and

independent software vendors
an open, standard way to
receive the benefits of
component-based software
development. As an extension
to the existing OLE
Automation interface, the OLE
control architecture will allow
OLE Custom Controls to work
with today’s OLE-enabled
applications across multiple
development environments,

and across different hardware platforms and operating systems. For example, users will be able to insert
different OLE Custom Controls into a database development environment to provide a range of
capabilities for their database applications. These capabilities might include specialized financial
modules, equation editing, scientific analysis, run-time tutorials, messaging, or any other type of
capability. The same OLE Custom Controls will also work with other development tools, such as fourth
generation programming languages. Users will even be able to incorporate the controls directly into any
OLE-enabled application, including productivity applications such as spreadsheets and word processors.
Because they will be able to pick and choose from a wide variety of standard, interchangeable
components, users get exactly the functionality they need, in a more cost-effective manner.

Through OLE Automation and OLE Custom Controls, component software will help lower costs for IS
departments. Corporations can now use packaged OLE components to reduce the amount of
programming needed to deliver a custom solution. OLE Custom Controls are a quick, simple, efficient
and standard way to incorporate reusable software components into custom and packaged applications.
OLE Automation is a way to integrate packaged applications into complete custom business solutions.
Additionally, solutions based on OLE component software can be easily adapted and extended by simply
plugging in new components.

Microsoft’s Object Technology Strategy:
Software Without Limits

By merging the benefits of OLE with the existing VBX
architecture, Microsoft is providing corporate developers,
system integrators and independent software vendors an open,
standard way to receive the benefits of component-based
software development.

10

Other features of OLE

In addition to Automation and the Custom Control architecture, OLE provides the following:

 Object linking
 Object embedding
 Object storage
 Object Visual Editing
 Object drag-and-drop capability between applications

Through object linking, applications can be linked to data objects within other applications. For instance,
a spreadsheet table can be linked into multiple custom business reports, and as changes are made to this
table within the spreadsheet application, all report documents are automatically updated. Object
embedding is the ability to embed an object within another document without maintaining a link to the
object’s data source. In both object linking and object embedding, applications supplying objects are
called OLE servers, while applications containing objects are called OLE containers. An application can
be both an OLE container and an OLE server. OLE objects can be nested in multiple layers within other
linked and/or embedded objects. Through object storage, the OLE system software allows applications
to store embedded and/or linked objects in their native file structures, creating a persistent link between
the objects and the container applications.

Visual Editing allows users to create rich, compound documents easily, incorporating text, graphics,
sound, video and other diverse object types. Instead of switching between applications to create parts of
the compound document, users can work within the context of their document. As the user begins to edit
an object that originated in another application, such as a spreadsheet or graphic, the menus and tools of
the container application automatically change to the menu and tools of that object’s native application.
The user can then edit the object in the context of the document, without worrying about activating and
switching to another application. Additionally, through OLE drag-and-drop capability, users can select
objects from an OLE-enabled application and drag them into other OLE-enabled applications. This
eliminates the need to cut and paste and saves time by making data exchange graphical and intuitive.

Distributed Object Systems

A key feature of the Component Object Model is its ability to facilitate communication between objects
across a network. Today, OLE with distributed object support has been distributed to almost 5,000
developers in pre-release form. All OLE 2.0-enabled applications that are available today will be able to
take advantage of distributed object capability in the future without any modifications. This capability
will allow the seamless interoperation of OLE-enabled applications running on different machines, using

a standards-based Remote
Procedure Call (RPC)
mechanism. The RPC
mechanism, called
Microsoft RPC, is based
on and compatible with the
Open Software
Foundation’s Distributed
Computing Environment
RPC (DCE RPC).

Microsoft’s Object Technology Strategy:
Software Without Limits

A key feature of the Component Object Model
is its ability to facilitate, through standard OLE
interfaces, communication between objects
across a network.

11

Example: a real-time stock-quote object

To illustrate the power of OLE with distributed object support, imagine that a user wants to create a
spreadsheet that includes a link to a real-time graph of stock prices. With a packaged OLE-enabled
stock-quote object running on a centralized server, the user can simply choose “insert” from the
spreadsheet menu, pick the stock-quote object from a list of available objects, and link the stock-quote
object into the spreadsheet running on the desktop. Through OLE’s distributed object support, the user
receives a real-time stock graph in the spreadsheet, but the stock-quote object itself, with its live data
feed and associated data processing, is executed on the server across the network.

In addition, because the stock-quote object is a standard COM object supporting OLE linking, it can
supply live data to any OLE-enabled container application without any additional programming. Thus, it
could just as easily be placed in a word processing document, or a custom financial trading application.
To extend the example even further, the stock-quote object might incorporate local OLE Custom
Controls that include a toolbar to allow individual users to change the types of stocks that are visible on
the real-time graph. As individual users move the object into specific documents or application windows,

they could easily access
the toolbar simply by
clicking the object. Then,
they could use the toolbar
to change which stocks are
shown on the desktop. No
additional code is needed
to allow the object to be
reused and customized for
these individual uses. The
true power of a robust
system software object
model is that it brings

object use beyond the realm of programmers sharing source code. It allows users and developers to
manipulate, customize and reuse objects without any programming whatsoever.

OLE with distributed object support will allow corporate developers to split an application into
component modules that can each transparently execute on a different computer. Since the Component
Object Model will provide network transparency, these components appear to users and programmers to
be located on a single machine, as illustrated in the previous example. The object-oriented billing system
described earlier could be designed as a set of components, including: a database query component; an
invoice processing component; a forms builder; and a transactions manager. Each of these components
could run on a computer suited to the amount of processing power and disk capacity the particular

component requires. In
fact, the system could be
designed to dynamically
locate idle processing
power available on the
network and distribute the
individual components to
specific computers
accordingly.

Furthermore, distributed object technology can also be used to make global networks and information
resources appear to be local, making it easier and faster for users to access critical business information.
Through OLE with distributed capabilities, users will be able to locate and execute objects across global
networks, without even knowing that the information is thousands of miles away. The distributed

Microsoft’s Object Technology Strategy:
Software Without Limits

The true power of a robust system software
object model is that it brings object use beyond
the realm of programmers sharing source code.
It allows users and developers to manipulate,
customize and reuse objects without any
programming whatsoever.

Through OLE with distributed capabilities,
users will be able to locate and execute objects
across global networks, without even knowing
that the information is thousands of miles
away.

12

capabilities for OLE will be incorporated into future versions of the Microsoft Windows family of
operating systems. Because OLE is an open, cross-platform technology, corporations will also be able to
assemble distributed OLE solutions across heterogeneous computing environments.

OLE 2.0 and cross-platform capabilities

Microsoft continues to work with other industry members to help ensure that object technology advances
within the Windows operating system are available on many diverse platforms, and can interoperate with
different systems. For example, Microsoft is providing OLE 2.0 capability for the Apple Macintosh
platform by layering the technology on the System 7 operating system. This will allow cross-platform
support for compound documents, allowing them to be freely exchanged between Windows and the
Macintosh. Additionally, Microsoft will make remote OLE Automation and data transfer available

between OLE-enabled applications on the Macintosh
and those running on the Windows platform.

Furthermore, through a recent agreement with Digital
Equipment Corporation, Microsoft and Digital are
integrating the Component Object Model technology
with Digital’s ObjectBrokerTM to enable cross-platform
OLE capabilities. Through ObjectBroker, OLE-enabled
applications running on Windows or the Macintosh will
be able to use and interoperate with objects running on
SunOSTM, IBM AIX®, HP-UX®, DEC ULTRIX®, OSF/1
and OpenVMS through OLE data transfer and OLE
Automation. Already, Microsoft and Digital have
demonstrated a Windows-based Microsoft Excel
spreadsheet containing a linked stock quote object that
runs on an OSF/1 server. As with the example
discussed earlier, the stock-quote object itself executes
on a centralized server (the OSF/1 machine). Because
it is a standard COM object supporting OLE 2.0, it can
also be freely linked with any other OLE-enabled
desktop application. In addition to the services
already defined in OLE 2.0, corporate developers and
ISVs will be able to create many new types of objects
and interfaces that are both source-code portable
across platforms, and fully interoperable across a
network.

Other object model specifications

The object-enabling system software arena can be confusing because there are different object models
that have been proposed by various vendors. For any system software object technology, even those that
claim to be cross-platform and interoperable, several key questions should be addressed. These questions
include the following:

 Is the object model a proven technology with many available applications, or is it merely a paper
specification?

Microsoft’s Object Technology Strategy:
Software Without Limits

OLE With Distributed Capabilities

All existing OLE 2.0-enabled applications will be able to
take advantage of future distributed capabilities without
modification. Furthermore, OLE will be available on a
wide range of platforms.

13

 Does the object model address the need for objects to work seamlessly between applications on the
same machine, and can the objects also work seamlessly between machines running over a network
using exactly the same model?

 Does the object model provide a safe binding mechanism? In other words, are there cases in which
objects could connect and fail because of weaknesses in the object system?

 Does the object model address the need for open, cross-platform, interoperability?

 Does the object model support a secure environment for distributed applications?

 Will the object model allow seamless integration of application objects and objects exposed as
operating system services? That is, is the object model appropriate for use in extending operating
system services, providing seamless integration between the operating system and applications?

OLE and the Component Object Model are open, proven technologies that meet all of these needs. OLE
is by far the most advanced object-enabling system software available, and it offers new potential for
personal as well as corporate computing. Object models such as IBM SOM/DSOM, and the Apple
OpenDoc specification for compound documents do not address many of these areas. Please refer to the
accompanying insert for a more detailed, technical comparison of these specifications.

The Open Process

OLE 2.0 was refined through an open forum Microsoft calls the Open Process. Through the Open
Process, Microsoft freely distributes and discusses preliminary technology specifications with hardware
and software vendors, software architects, OEMs, and corporate developers a year or more before the
scheduled release. They, in turn, offer alternative approaches and solutions that help refine and shape the
system technology. Early access to the design process also allows independent developers to build
applications that fully exploit the new technology, giving users more innovative and robust applications.

Major software vendors,
including Lotus
Development Corporation,
Borland International, Inc.,
Apple, Computer, Inc.,
WordPerfect Corporation
and many others
participated in open design
reviews for OLE 2.0. In
addition, preliminary OLE
2.0 specifications were
distributed to more than
150 other software vendors

for review and feedback. As a fully published and open specification, OLE 2.0 has enjoyed tremendous
industry acceptance. Hundreds of applications that support OLE 2.0 are either shipping or soon to be
released, and OLE 2.0 won the 1993 PC Magazine Technical Excellence Award, the MVP: Software
Innovation Award from PC-Computing and the Technology Award for Excellence from BYTE
Magazine.

The Evolution of Microsoft Windows

Exposing system services as objects

Microsoft’s Object Technology Strategy:
Software Without Limits

Hundreds of applications that support OLE 2.0
are either shipping or soon to be released, and
OLE 2.0 won the 1993 PC Magazine Technical
Excellence Award, as well as the MVP: Software
Innovation Award from PC-Computing and the
Technology Award for Excellence from BYTE
Magazine.

14

As evidence of its advanced design, the Component Object Model not only allows individual applications
to interoperate and communicate through OLE, it also provides an object-based interface to Windows
system services, called system objects. Today, these services include memory allocation, file
management and data transfer. In fact, OLE forms the basis for Microsoft’s strategy to evolve the
Windows family into object-oriented operating systems. Future versions of Windows will extend object-
based services to include facilities such as integrated OLE Custom Controls, multimedia services, data-
access services, name services, and distributed security. These object-based services will gradually
become pervasive, providing easily replaceable components within the Windows operating system itself.

This evolution will protect a corporation’s investments
in existing software, since current Windows-based
applications will continue to operate on future versions
of Windows. The OLE interface will become the

single standard interface not only for applications to interact with each other, but also for applications to
interact with operating system services. As the object capabilities of Windows expand, existing

applications will get many new object-based features for
free. All existing OLE 2.0 applications, for instance,
will be able to work seamlessly across a network
through OLE with distributed capabilities. And existing
OLE-enabled applications will support extensive drag-
and-drop capabilities within the Windows user-
interface, as discussed below.

Object-based innovations that will be incorporated into future versions of Windows include the
following:

 An improved object-based graphical user interface
 Diverse system services exposed as system objects through OLE-style interfaces
 Integrated OLE Custom Controls
 A new object-based local and distributed file system

The next version of Microsoft Windows (a major upgrade from Windows 3.1, code-named “Chicago”), as
well a future release of the Windows NTTM operating system (code-named “Cairo”), will incorporate an
object-based user-interface. This interface will treat all files and applications as objects, unifying the
Program Manager and File Manager. The interface will allow users to manipulate files, programs,
printers, utilities and other system resources in a consistent fashion. Users will be able to group logical
combinations of objects into folders, and place frequently used objects on the desktop for easy access.

Microsoft’s Object Technology Strategy:
Software Without Limits

OLE: Providing Tight Integration Between
Applications and Windows System Services

An object-oriented operating system must provide an
object model which will allow diverse objects to interact.
It can also include a multitude of extensible and
replaceable component services, exposed to applications
as objects.

15

In addition, through extensive OLE support, OLE-enabled applications will be seamlessly integrated with
the Windows user-interface, supporting drag-and-drop across the desktop and between system resources.

Furthermore, objects such as
files and system resources
will have a new feature
called property sheets, which
will present identifying
information. This
information will allow users
to browse and configure
objects without actually
opening them or having to
use special system utilities.

As it evolves, the next generation of Microsoft Windows NT will incorporate all of these advances, plus
additional, advanced capabilities for high-end workstations (Windows NT) and server platforms
(Windows NTTM Advanced Server). Windows NT “Cairo” will incorporate an object file system that will
allow for very easy and exceptionally fast retrieval of information. Through object cataloging and
properties a user will be able to search an entire network for all documents meeting a specified criteria.
For example, a user could ask for all documents written by John Adams that contain 1994 budgeting
information. Of course, there will continue be full security to protect files and resources from
unauthorized access.

Microsoft’s strategy: pioneering object technology innovations

Microsoft is a leader in object technology and has pioneered new innovations both at the application
programming level and the system software level. These innovations are a step toward realizing a vision
we call Information at Your Fingertips, and they are aimed at bringing the benefits of object technology
directly to end users. Computers must make it easy for corporations to access and use strategic
information, regardless of its source or location. While Microsoft’s work with object technology has
brought us closer to the vision, many challenges remain. Microsoft will continue to be a leader in
delivering object technology by operating according to the following strategic principles:

Microsoft’s Object Technology Strategy:
Software Without Limits

The next generation of Windows NT will
incorporate an object file system that will allow
for very easy and exceptionally fast retrieval of
information. Through object cataloging, a user
will be able to search an entire network for all
documents meeting a specified criteria.

16

Microsoft’s Object Technology Strategy:
Software Without Limits

Microsoft’s Strategy for Delivering Object Technology Innovation

¨ Deliver Value Today
Provide the best and most practical object solution for the customer
through innovative system software.

¨ Provide the Most Comprehensive Cross-Platform Support
Ensure that new object innovations interoperate across multiple
platforms
and incorporate market-driven standards.

¨ Provide the Most Open Solution
Ensure that new object innovations are published and refined through
the Open Process, fostering broad industry participation and
innovation.

¨ Protect Existing Customer Investments
Future versions of Windows will provide extensive OLE services. Today’s
OLE-enabled applications will inherit tomorrow’s capabilities.

17

Object Technology and Microsoft Products

Today, Microsoft offers the benefits of object technology to enterprise computing through the OLE
object-enabling system software, desktop applications that make full use of OLE capabilities, and object-
oriented programming languages and development environments with integrated OLE support.

Object-enabling system software innovations
 Object Linking and Embedding 2.0-- as stated by Michael J. Miller, Editor In Chief of PC Magazine,

“OLE 2.0 offers a far easier, far better method of integration, and it will fundamentally change
our expectations for the next generation of software.” (PC Magazine, Dec. 7, 1993 p. 78). Many
OLE 2.0-enabled applications are available today and hundreds more are on the way.

 The Component Object Model-- the object model on which OLE 2.0 is based, which will be an
integral part of future object-oriented versions of Microsoft Windows. The future of Windows
includes the ability to easily build distributed applications that interoperate through OLE, across
different machines and different platforms. Today, the Component Object Model offers the
ability to use OLE applications as off-the-shelf components for custom business solutions, and to
program custom, OLE-enabled business objects.

Desktop applications that make full use of OLE capabilities
 The Microsoft Office Business Productivity Applications-- includes the Microsoft® Word 6.0 word

processor, the Microsoft Excel 5.0 spreadsheet, the Microsoft PowerPoint® 4.0 presentation
graphics program, and the Microsoft Access® 2.0 relational database development system. These
applications are OLE 2.0-enabled, with drag-and-drop capability, Automation, and Visual
Editing. In addition, Visual Basic for Applications, a built-in macro language, can be used to
customize Microsoft Office applications and integrate them with other OLE-enabled
applications through Automation. Most other Microsoft applications will include OLE 2.0
support in upcoming releases.

Object-oriented programming languages and development environments
 Microsoft Visual C++-- a complete visual development environment for the most popular object-

oriented programming language in use today. Visual C++ can be used to build complete OLE-
enabled applications. Through Object Wizards, developers can create OLE-enabled Windows
applications at the touch of a button.

 Microsoft Foundation Classes (MFC)-- an application framework that provides hundreds of highly
reuseable C++ object classes. These classes can be used to significantly reduce the amount of
programming necessary to develop Windows-based applications, and to deliver complete OLE
capability within these applications. MFC is bundled with Microsoft Visual C++ and many
third-party C++ compilers.

 Microsoft Visual Basic-- a high-level, object-based version of the BASIC language, combined with a
visual development environment that makes it easy to write custom, Windows-based business
solutions. Today, Visual Basic provides a specific class of object called Visual Basic custom
controls (VBX’s), which can be used to add a wide range of services to a custom application. By
taking advantage of the built-in support for OLE Automation, Visual Basic can also be used to
customize and integrate packaged software. In the near future, OLE Custom Controls will also be
available to bring the advantages of OLE to the existing VBX custom control architecture.

Microsoft’s Object Technology Strategy:
Software Without Limits

18

Object technology: continuing innovation

Microsoft continues to refine its programming environments, applications and system software to deliver
more functionality and increased ease of use. In the future Microsoft will continue to:

 Deliver best-of-breed development environments, applications and operating systems by listening
closely to the needs of our customers, and by developing new object technology innovations that
help meet these needs.

 Work closely with standards bodies and industry members through the Open Process to ensure
interoperability and availability of Microsoft object technologies on a wide range of platforms.

Conclusion
Today, advances in personal computing are helping corporations compete in a dynamic, global economy.
Businesses, however, need new ways to deliver information systems in a faster, more cost-effective
manner. Object technology, in the form of OLE, will help businesses meet these needs. OLE 2.0 is
based on the Component Object Model, an object standard that allows objects written by any company in
any programming language to interact. OLE addresses a critical system software requirement that object-

oriented programming
languages do not: the need
for true application
interoperability-- on a
single computer and across
computers operating on the
network.

OLE will allow corporations to use packaged, component software as building blocks for complete
business solutions, lowering costs and helping information departments to work more efficiently.
Furthermore, Microsoft will continue to evolve the Windows family of operating systems (Windows,
WindowsTM for Workgroups, Windows NT and Windows NT Advanced Server) to incorporate advanced
object capabilities through OLE. These capabilities will include distributed object support; object-based
system services; an easy to use object-based graphical interface; integrated OLE Custom Controls; and a
new object file system.

Finally, Microsoft will continue to publish object specifications and garner feedback through the Open
Process, ensuring the broad interoperability and availability of OLE on other platforms. Our goal is
simple: deliver innovative, best-of-breed software based on the needs of our customers. By playing a
leadership role in advancing object technology, we move closer to realizing the vision of Information at
Your Fingertips.

Microsoft’s Object Technology Strategy:
Software Without Limits

Our goal is simple: deliver innovative, best-of-
breed software based on the needs of our
customers.

19

For more information

For more information on OLE 2.0, Microsoft development tools, or any Microsoft application, call the
Microsoft Developer Services Team toll-free at (800) 227-4679. In Canada, call (800) 563-9048.
Outside the 50 United States and Canada, contact your local Microsoft subsidiary. You can also contact
Microsoft by fax at (206) 936-7329. Specify Developer Services Team, RWF on your cover sheet. A
TDD/TT (text telephone) is available for the hearing impaired: call (206) 635-4948.

The Microsoft Developer Network

The Microsoft Developer Network is an annual membership program created to support all developers
who write software for the Microsoft Windows family of operating systems or who use Microsoft
products for development. Members receive technical and resource information on a regular basis
through three channels: the Microsoft Developer Network CD, the Microsoft Developer Network News
and the MSDNLIB Forum on CompuServe®. For more information call (800) 759-5474, seven days a
week, 24 hours a day.

Microsoft’s Object Technology Strategy:
Software Without Limits

20

Appendix A: Technical Overview

A Discussion of Object-oriented Programming Languages

Object-oriented programming (OOP) offers a different approach to custom application development and
can offer benefits to information departments delivering strategic information systems. Object-oriented
programming serves a different need than object-enabling system software. For instance, building OLE
2.0 applications and component objects does not require the use of object-oriented programming
languages, although they can be used, if desired. When developing custom applications, object-oriented
programming can help with the following:

 Reduce programming time
 Increase programmer productivity
 Make systems easier to maintain and adapt to changing business needs
 Increase the quality of new applications

Because the OOP approach is quite different than standard, procedural-based system development,
information departments need proper training on object-oriented design and programming concepts
before these benefits can be realized. In addition, when implementing object-oriented systems using
object-oriented programming languages, taking the time to plan the system blueprint is critical.
Unforeseen changes to class structures (as discussed below) can wipe out any benefits received. The
decision to use pure object-oriented programming languages should be weighed carefully, on a case-by-
case basis.

Example: an object-oriented human-resource application

Suppose a company wants to take advantage of object-oriented programming to create a human resource
application to keep track of employee records. The designers might start by defining an “employee
object” that would contain specific data such as name, address, tax exemptions and pay level; then they
also would incorporate specific employee methods, such as issuing a paycheck; updating benefits
information; and processing tax forms. All of the sub components in this application would also be
represented as objects. For example, the paycheck would be represented as a paycheck object, and the
process of printing the check and making the appropriate accounting and audit-trail entries would be
methods of the check object. Once designed, the objects themselves would be implemented as source
code object classes. These classes are object definitions which are dependent on the particular object-
oriented language being used.

Microsoft’s Object Technology Strategy:
Software Without Limits

21

Because of the modularity objects achieve, they can often be more easily reused in other applications
than standard procedures and functions. For example, if a check object is written for the human resource
application, it can be reused for an accounts payable application as well.

If designed properly, classes of objects can be reused across many different applications, and corporations
can develop class libraries for this purpose. Once defined, these classes can become source-code building
blocks for other applications, reducing the amount of time and money needed to deliver new systems.

Initial object-oriented systems involve more
programming, since class libraries are
relatively sparse at first. Over time, less
time is spent programming new objects.

Instead, programmers can browse existing
class libraries and select objects that meet
their needs.

There are drawbacks to this approach. Class libraries are highly dependent on their inherent
programming language and implementation, which limits their flexibility for reuse in other applications.
As described in Appendix B, the packaging of objects as binary, component objects based on COM (with
OLE 2.0-enabled services), can eliminate many of the practical limitations of reusing source-code class
libraries. For example, a library of OLE 2.0 Custom Controls provides “packaged” binary objects that
can be reused in any OLE -enabled development tool or container application.

Application frameworks

It might be expected that as class libraries are developed for reuse, there could even be a market for
them. In fact, application frameworks are just that - commercially available class libraries that can make
it easier to write new programs. Not only do application frameworks provide class libraries that reduce
the amount of programming, often they make programming easier by abstracting interfaces to complex
computing resources. For example, the Microsoft Foundation Classes (MFC) is a complete library of
classes that can be used to build Windows applications in C++. These classes have high-level interfaces
that are easier to learn and implement than low-level application programming interfaces (APIs). The

Microsoft’s Object Technology Strategy:
Software Without Limits

Reusing Source-Code Objects Across Multiple Applications

As objects are defined for one application, they can be
incorporated into class libraries for future reuse in other
applications. These objects are shared as source code, so they are
implementation and language dependent, however.

22

MFC classes also provide data processing and common routines that Windows applications require,
substantially reducing the amount of required programming.

Application frameworks such as MFC can also abstract interfaces to other computing services such as
print services; database services, and messaging services. For example, MFC provides much of the code
needed to write applications using Open Database Connectivity (ODBC), a standard technology for
accessing heterogeneous databases. MFC also includes full support for OLE 2.0 , allowing corporations
to more easily create their own OLE component business objects that can be fully integrated with other
OLE-enabled packaged software.

Microsoft’s Object Technology Strategy:
Software Without Limits

23

Implementation inheritance and class hierarchies

Implementation inheritance allows data and procedures of an object class to be defined once, and reused
by subclasses of objects that enhance or modify the functionality to meet more specific needs. For
instance, in the previous human resource example, the application might need to have the capability to
differentiate permanent employees from temporary employees. While much of the data and processing
would be common between these two types of employees, some processing might be unique, such as tax
reporting. Through implementation inheritance, all of the common data and processing can be defined as
a superclass called “employee”. Subclasses of objects can then be defined for “temporary employee” and
“permanent employee”, with each automatically inheriting all of the data and processing functionality of
the superclass “employee”. Specialized methods can then be defined for tax reporting for temporary and
permanent employees in order to handle these unique needs. This leads to structures called class

hierarchies.

Through a technique called overloading, the
names for these two specialized tax processing
methods can be the same, even though each
method works differently depending on the
object being processed (the receiving object).
For example, the methods for processing a tax
report for permanent and temporary employees
might each be called “Process Taxes”. The
objects themselves know to carry out the call

(known as a message) to “Process Taxes” in their unique way. Overloading can significantly reduce the
number of function names that programmers need to invent and learn, and focuses application
development around a language that closely follows the way we think. This hiding of alternative
processing behind a common interface is called polymorphism- which literally means “many forms.”
Through polymorphism, entire families of objects can share the same method names, greatly simplifying
application development. This makes applications easier to maintain, and allows other applications to
reuse large portions of already developed code by tailoring objects to meet specific needs. OLE-enabled
component objects, like most object-oriented programming languages, support overloading and
polymorphism.

Microsoft’s Object Technology Strategy:
Software Without Limits

Implementation Inheritance and Class Hierarchies

Implementation inheritance allows data and methods to be
defined once, and reused by subclasses of objects. This can
reduce required programming. Pictured above, specialized
tax processing methods have been implemented for
permanent and temporary employees. These objects,
however, have also inherited much of their functionality from
a superclass.

24

Object-enabling system software must provide for the free interaction of objects written by different
companies in different programming languages. Hence, the use of uncontrolled implementation
inheritance, which creates implicit dependencies between different objects through class hierarchies,
should not be allowed in object-enabling system software. The COM specification for OLE-enabled
component objects does not allow these implicit relationships between objects. These dependencies
would limit the robustness of the objects and the entire system. For example, updating a superclass
(often called a base class) object without updating a subclass object could break the system. The
implementation dependencies would also greatly limit the freedom to choose objects written by different
companies in different programming languages. If COM allowed uncontrolled implementation
inheritance, there would be no guarantee that objects supplied by different vendors or different
programming teams would work together. Furthermore, updates to objects would have to be coordinated
between different companies, which can be highly problematic.

OLE-enabled component objects can, however, be easily reused across different applications through
component inheritance- which is simply a way for an object to easily call on another object to provide a
service. In this way, programmers need not re-implement code that has already been written. Instead
they simply call on another component object to provide the functionality. At the same time, component
inheritance is completely controlled and does not create any of the implicit dependencies between objects
that result from the use of uncontrolled implementation inheritance.

Similarly, in programming custom business objects, it is important to understand that the use of
implementation inheritance to achieve code reuse, while useful in some circumstances, also has some
limitations. For example, if a fundamental change is required to a base class, any applications which
have defined subclasses to this base class may stop working or require significant changes themselves.
Class hierarchies are most effective when controlled centrally by a small group of programmers, and are
not as useful when implemented in distributed systems; systems integrating objects written in different
programming languages; or systems made up of diverse objects supplied by different vendors. As
discussed in Appendix B, objects programmed as OLE-enabled component objects can be easily reused
in all of these situations without these drawbacks.

While OLE 2.0 and the underlying Component Object Model are robust specifications meeting the
requirements for object-enabling system software, some proposed system object models attempt to
straddle the border between a true system object model, and object-oriented programming technology.
For example, IBM SOM/DSOM and the proposed Apple OpenDoc specification (which will draw on
IBM SOM for its object model), both allow uncontrolled implementation inheritance as a way to allow
programmers to reuse the implementations of other objects that have already been defined. While this
may be convenient from a programming perspective, the end-result will be inter-dependencies between
objects which will prevent objects from being freely exchanged between different vendors’
implementations, and autonomously upgraded in distributed object systems. There are many other
aspects of object-enabling system software technology that are not addressed by the IBM SOM/DSOM
technology or the proposed Apple OpenDoc specification. For a closer look, please see the
accompanying insert comparing these technologies.

Microsoft’s Object Technology Strategy:
Software Without Limits

25

Appendix B: Technical Overview

Object-oriented Programming:
How OLE 2.0 and the Component Object Model Relate

During the past few years, increasing attention has been paid to object-oriented application design and
programming languages. To some, these tools have been the very essence of object technology. OLE
and the underlying Component Object Model go beyond the realm of programming languages and
specific object-oriented development techniques. These tools and techniques can, however, play an
important role in OLE-enabled application development. In fact, object-oriented languages and
programming techniques can be seamlessly integrated with the development of OLE-enabled
applications, and can make the development effort faster and easier. For example, the Microsoft
Foundation Classes help programmers build OLE-enabled applications by providing source-code object
classes with packaged OLE functionality. Developing custom OLE-enabled component objects and/or
integrating packaged OLE-enabled applications through Automation, however, does not require the use
of object-oriented programming languages, although they can be used if desired. As object-enabling
system software, OLE and COM are language independent.

Using OLE Automation to integrate component software

It is important to understand the distinction between using OLE Automation to integrate applications into
custom solutions, and actually programming your own OLE objects. To use OLE Automation simply
requires any programming tool which supports OLE Automation programming (called Automation
Controllers), and requires no technical knowledge of object-oriented programming, the OLE
programming interface, or the Component Object Model architecture. Instead, the developer only needs
to learn how to use the object-based interfaces (commands) that allow Automation Controllers to access
the capabilities of packaged applications. Documentation on these interfaces is provided by the
application vendor, in much the same way vendors provide documentation for any application-specific
macro language. With this documentation, developers can then use their favorite programming tool
(Automation Controllers) to drive packaged OLE-enabled applications by making calls to the object-
based commands.

OLE Automation, in short, creates applications that “listen,” and programming tools are used to “talk” to
these applications, directing them to accomplish a processing task. For example, to automate the creation
of a chart in a spreadsheet application from a Visual Basic program, the developer need only learn how to
use the chart object’s object-based interfaces (commands). Then a custom program can be developed
using Visual Basic to create and manipulate a spreadsheet chart in any manner supported by the
spreadsheet application. Many popular high-level development tools and programming languages
already have or will soon have built-in support for using OLE Automation in this manner.

In fact, if an application’s macro language supports “talking” to other applications through OLE
Automation (i.e. it is an Automation Controller), then the macro language itself can be used to program
calls to other applications. For instance, a developer or system integrator can use a word processor’s
macro language to directly make calls to the spreadsheet’s object-based interfaces, if the word
processor’s macro language is an Automation Controller. Thus, full programming languages such as C or
Visual Basic are not necessarily required to integrate OLE-enabled applications through Automation.
Applications can be programmed to use each other's services directly through built-in macro languages.
A good example is Visual Basic for Applications, which is available today as a macro language for
Microsoft Excel 5.0, and will become the common macro language for all Microsoft Office applications.

Microsoft’s Object Technology Strategy:
Software Without Limits

26

Developing your own OLE 2.0 applications and component objects

The availability of a wealth of OLE-enabled component software (including finer-grain component
objects such as OLE Custom Controls, and larger-grain applications supporting OLE Automation),

combined with the ability to easily integrate this
software with custom applications, will allow
corporate developers to deliver highly tailored, fully
functional business solutions with a greatly reduced
amount of programming. Of course corporations and
systems integrators will still need to develop some

specialized business processing. Today, corporate
developers and systems integrators have the choice of
programming custom processing logic using a
traditional language such as COBOL, or an object-
oriented programming language such as C++ or
SmallTalk®. The advantage of using object-oriented
languages over traditional languages is that in some
cases object-oriented source code can be more easily
reused in future applications requiring similar
functionality (for instance, through class libraries and
implementation inheritance).

OLE and the Component Object Model now give corporate developers and system integrators another
choice that has distinct advantages in many situations. That choice is to program the business logic
(using any programming language, object-oriented or not) as a component object supporting one or many
OLE features such as Visual Editing, drag-and-drop, or Automation. In many cases this choice will
empower IS organizations to deliver greater value. Some of these cases are listed below:

1) When the developer wants the object to be able to execute in a distributed fashion across a
network, without having to program any networking code. An object-oriented programming
language alone cannot give an object this ability. But all OLE-enabled component objects will have this
capability when OLE with distributed capabilities becomes available, no matter what language was used
to program them.

2) When the developer wants the object to have all the end-user capabilities of an OLE object - such
as incorporation into other applications and compound documents, Visual Editing, and drag-and-
drop. For instance, if a corporation is developing a custom order-entry system, by programming an
invoice form with OLE server capabilities, users will be able to drag this form into word-processing
documents, spreadsheets, mail systems (i.e. an email outbox), or any OLE-enabled container application.
If the invoice form was also programmed as an OLE container, then any other OLE object could be
placed within it. These capabilities are for the first time available through the OLE system software.

Microsoft’s Object Technology Strategy:
Software Without Limits

Reusing Software Through Component Object Libraries

With OLE, organizations can build up libraries of
component objects, as opposed to just class libraries,
and freely use these objects in multiple applications,
using many different development tools and
programming languages.

27

3) When the developer wants to expose the custom object’s services through OLE Automation.
Then, these custom services can be called from any programming language or any macro-language
supporting OLE Automation programming (Automation Controllers). The advantages of this approach
are significant:

 Any programming language can be used to access the object’s services. The commands used to
program these services are defined by the organization as a set of object-based interfaces. These
interfaces can then be documented, and other development teams can reuse the object using any
programming language or development tool they choose. In fact, the object’s interfaces can now be
called directly from any packaged application (such as spreadsheets, word processors, vertical-
market applications, etc.) which has a macro language that is an Automation Controller. This not
only frees corporate programming teams to use different programming tools while sharing objects
across distinct development projects, it also allows corporate developers and system integrators to
effectively build extensions into a packaged application. These extensions can then be freely
accessed through the packaged application’s macro language, and by other OLE-enabled
applications.

 The developer of an OLE-enabled component object can completely shield the object’s users
from the source code and implementation details of the object. Users of OLE component objects
do not need to understand, use, link to or recompile any source code whatsoever. Instead, the object
is simply compiled once by the object developer, and it can then be freely reused by any other
application. This eliminates the class hierarchy and source code dependencies that are prevalent in
both object-oriented languages and standard procedural-based languages when reusing object classes
or procedural-based source code libraries. OLE-enabled component objects are more robust, since
component objects get the advanced versioning control inherent in the COM architecture. Also, with
an OLE-enabled component object, it is possible to enhance and modify an individual object’s
functionality without recompiling and redistributing all the applications that use the object. Again,
none of the object’s source code has been incorporated into the applications using it, and the object
itself is not dependent on any implicit class hierarchy relationships, so changes to its implementation
can’t break other applications.

Microsoft’s Object Technology Strategy:
Software Without Limits

Creating OLE-Enabled Component Objects

28

Using object-oriented programming tools
to reduce development time

The Component Object Model is completely language independent, and corporate developers can
program custom business objects as OLE-enabled component objects using any programming language
they want. Today, any compiler or language supporting calls to Windows-style functions can be used to
create OLE 2.0-enabled component objects. In addition, application frameworks such as the Microsoft
Foundation Class Library can hide much of the detail and significantly reduce the required C/C++
programming for building custom component objects.

If a corporation makes the choice to move to an object-oriented development environment, these
environments can also be used to program custom OLE 2.0 objects as discussed above, in combination
with commercially available frameworks. In many cases, however, and increasingly over time, the
functionality required from the business object will be commercially available as a component object
(such as an OLE Custom Control). It can then be purchased in packaged form for a price much less than
it would cost to develop. This is one of the primary goals of component software and the Component
Object Model architecture. Through OLE Automation, the purchased object can be easily integrated into
a custom application using any number of high-level programming tools and development environments

that support Automation Controller capabilities.

The languages and development tools used to accomplish this integration are completely up to the
particular organization. If the development team is comfortable with object oriented programming, and
feels it offers significant advantages, it is free to use an object-oriented programming tool to build the
integrating code. However, the team may also want to use a more traditional language such as COBOL.

Microsoft’s Object Technology Strategy:
Software Without Limits

OLE-enabled component objects are language
independent, and can be created using traditional
languages, as well as object-oriented programming
languages and application frameworks such as C++
and MFC.

29

Whether integrating existing OLE-enabled component objects and applications through Automation,
using OLE Custom Controls, or building custom OLE-enabled component objects from scratch for future
reuse, OLE and the Component Object Model create choice. In all of these cases, development time is
reduced, and IS departments are empowered to deliver more flexible, higher quality applications using
the development tools they choose.

For more technical information

An excellent source of information on the Component Object Model and OLE 2.0 is Inside OLE 2.0, by
Kraig Brockschmidt. This book is available at most major bookstores, and directly through Microsoft by
calling toll-free (800) MSPRESS. Inside OLE 2.0 presents a complete guide to programming component
objects using C++. To obtain the OLE 2.0 Software Developer’s Kit (SDK), call the Microsoft
Developer Services Team toll-free at (800) 227-4679. If you require TDD/TT (text telephone) for the
hearing impaired, call (206) 635-4948. In Canada, call (800) 563-9048. Outside the 50 United States and
Canada, contact your local Microsoft subsidiary. You can also contact Microsoft by fax at (206) 936-
7329. Specify Developer Services Team, RWF on your cover sheet. You are also strongly encouraged to
join the Microsoft Developer Network.

Microsoft’s Object Technology Strategy:
Software Without Limits

30

Appendix C: Glossary of Terms

Object-technology has introduced many new terms and acronyms to the software industry. The following
glossary should prove useful in understanding these terms and how they relate to delivering business
solutions.

Abstraction
Abstraction is the basis for a well constructed object-oriented system. It is the process of creating a user-defined
data type, and is often referred to as “information hiding.” In object-oriented programming, abstraction is used to
define object classes that closely resemble real objects (such as invoices, products, etc.). These objects hide their
inner complexities from users and programmers, making them easier to understand and use. Application
frameworks also use abstraction as a way to make programming easier. Instead of learning complex, low-level
application programming interfaces (APIs), programmers can use the easier-to-understand, abstracted interfaces
provided by the framework.

Automation
Automation is one of the features of Object Linking and Embedding 2.0. Automation is the ability for one
application to dynamically use the services of another application, without having been specifically designed to do
so. For instance, a word processing application, through OLE Automation, can be customized by a user, corporate
developer or system integrator, to interface with any OLE-enabled spreadsheet application to recalculate cells, draw
a graph, or perform any service that the spreadsheet supports. This ability can “automate” processing tasks for
users. Applications export their internal services through abstractions called Automation Objects. Automation is a
breakthrough in object technology, since it allows independent, packaged applications to be easily integrated into
custom business solutions.

Automation Controller
An Automation Controller is a development tool or application that can drive OLE applications through
Automation. Today, Microsoft Visual Basic, Visual Basic for Applications, and Microsoft Visual C++ are all
Automation Controllers. Numerous third party development tools available today are also Automation Controllers.
In the near future, a corporation will be able to pick from even more development tools and programming languages
to get Automation Controller capabilities.

Automation Objects
An Automation object is component software which supports OLE Automation. For instance, Microsoft Excel
charts are Automation objects because they can be created and manipulated (“automated”) by other applications
through OLE Automation. OLE Custom Controls are another form of automation object. See also, Object Linking
and Embedding 2.0, Automation, and OLE Custom Controls.

Aggregation
Aggregation is an object-oriented technique that allows individual objects to be grouped together to form a meta-
object which provides all of the interfaces (methods) of its constituent objects. It can be used as an alternative to
classical inheritance (implementation inheritance) in certain cases, since aggregation does not create an implicit
dependency between the different objects which make up the meta-object. The Component Object Model supports
aggregation.

Application Framework
Application frameworks are sets of objects that provide packaged functionality and programming interfaces to
accomplish specific tasks. For instance, the Microsoft Foundation Classes include a set of C++ classes optimized
for writing Windows-based applications, as well as classes that make it easy to use many different computing
resources. Frameworks are an important aspect of object technology, since they can reduce development effort by
providing interfaces that are easier to learn and use than low-level APIs. They also reduce the amount of code that
needs to be written since the classes provide packaged functionality.

Microsoft’s Object Technology Strategy:
Software Without Limits

31

Class
A class is an abstract data type defining the data and methods for a specific type of object. Programmers use classes
to define instances of objects within their programs. As an analogy, “cat” is a class of mammals, while your
neighbor’s cat Waldo is a specific instance (object) of the class cat. In object-oriented programming languages, the
object is implemented as a source-code template. This template is used to create specific instances of objects within
programs.

Class Hierarchy
A class hierarchy is a group of superclasses and subclasses that are related through an inheritance tree. For instance,
the class “cat” has logical subclasses including lions, tigers, and house cats. Each of these subclasses inherits
certain common characteristics (such as agility), but each also has specific features and abilities of its own. In
object-oriented programming, class hierarchies are used to identify common data and procedures once as a
superclass, and then enable the superclass to act as a template for related object types. Subclasses of the superclass
can then be defined and tailored for specific needs without having to write completely new definitions from scratch.

Common Object Model
See also the Component Object Model. The Common Object Model is an open architecture for cross-platform
development of client/server applications based on object-oriented technology. Recognizing the need to allow
objects on different types of operating systems to interact, Microsoft and Digital Equipment Corporation are
developing the architecture to allow interoperation of OLE 2.0 and Digital’s multi-platform object system,
ObjectBroker. The Common Object Model is the functional equivalent of the Component Object Model for UNIX-
based platforms that today include SunOS, IBM AIX, HP-UX, ULTRIX, OSF/1 and OpenVMS. The Common
Object Model defines a common DCE RPC-based protocol and a subset of core OLE 2.0 functions that will be
supported by Digital and other interested companies within their products. The Common Object Model is a direct
outgrowth of the Component Object Model and provides full upward compatibility with OLE 2.0. In addition to the
services already defined in OLE 2.0, ISVs, corporate developers and system integrators will be able to create new
types of objects and interfaces that are both source-code portable across platforms, and interoperable across a
network.

Common Object Request Broker Architecture (CORBA)
CORBA is a specification produced by the Object Management Group, which attempts to define some common
ground for different object models to interact in a distributed fashion. Because it is a functionally limited
specification, however, it cannot guarantee interoperability between products. Today, no two CORBA-compliant
products provide basic object interoperability through the CORBA architecture. There are, however, numerous
products that claim to be “CORBA-compliant.” Any product that claims CORBA-compliance should be evaluated
carefully, since this compliance is ill-defined and cannot provide a standard for interoperability.

Component Inheritance
Component inheritance allows OLE component objects to be easily reused in different applications, without creating
implicit relationships between objects. This avoids the problems of uncontrolled implementation inheritance, which
creates dependencies between objects. OLE objects, becuase they suppport component inheritance (while
preventing uncontrolled implementation inheritance), can be freely exchanged between different vendor
implementations, and/or upgraded without breaking existing applications. Component inheritance is simply the use
of an existing component object to supply functionality for a new object. This reduces programming effort, since it
eliminates the need to re-implement existing code. Programmers can use existing component objects to supply
functionality. For instance, a programmer can easily reuse OLE Custom Controls in many different applications,
saving significant development time. All component objects support reuse through component inheritance. See
also, implementation inheritance and the Component Object Model.

Component Object Model
The Component Object Model, or COM, is a standard mechanism for objects written by different companies in
different programming languages to interact. The COM infrastructure will also support remote object connections
(across a network) in a totally transparent fashion. COM defines a binary object interface, and allows stand-alone,
packaged applications to dynamically explore and use services provided by other COM-based applications. COM is
the basic “wiring and plumbing” for all OLE 2.0 features. For instance, COM allows component software
applications to be integrated into larger business systems through OLE Automation. The Component Object Model
provides the most advanced object features available in any system object model. These features include robust
object versioning control, a complete logical thread model to prevent object deadlocks, globally unique identifiers to
prevent object name collisions, the ability to seamlessly share objects across different address spaces, seamless
support for distributed objects, language independent binding, support for object security, and many more. OLE 2.0

Microsoft’s Object Technology Strategy:
Software Without Limits

32

provides extensive object services built on top of COM, including complete support for compound documents, and
cross-application object scripting (Automation). In addition to the services already defined in OLE 2.0, ISVs,
corporate developers and system integrators will be able to create new types of objects and interfaces that are both
source-code portable across platforms, and interoperable across a network. Today there are over 1.5 million
component objects being used in desktop business applications. See also, Object Linking and Embedding 2.0 and
Object-Enabling System Software.

Component Object
Component objects are objects that support the Component Object Model specification. Component objects can
dynamically explore the capabilities of other component objects, and use their services through OLE Automation.
This is a breakthrough for the software industry, since component objects allow independent, packaged objects to be
seamlessly integrated by users and system integrators, no matter what company designed the objects or which
programming language was used to program them.

Component Software
Component software is an application that contains one or more component objects, which can freely interact with
other component software through OLE capabilities. Examples include OLE -enabled applications such as the
Microsoft Office applications, and soon packaged, commercially available OLE Custom Controls. The component
software market will offer a more productive approach to assembling (versus building from scratch) complete
business solutions.

Compound Documents
Compound documents are documents which contain multiple data types. Often, the different types of data have
been created by different applications, and embedded into the document. For instance, a report document is a
compound document if it contains an embedded spreadsheet table. OLE enables the creation of rich, compound
documents by treating application data as objects which can be freely moved and manipulated between applications.

Container
A container application is an OLE-enabled application that can store embedded or linked objects provided by OLE
server applications. When dragging a spreadsheet chart into a word processing document, for example, the
spreadsheet application is the OLE server, while the word processor is the OLE container. OLE 2.0-enabled
applications can be both object containers and object servers.

Distributed Object System
A distributed object system is a system in which objects located on different machines cooperate to accomplish a
common task. Any distributed system with different processes executing and communicating across a network
could probably be called a distributed object system, since the definition of object is not precise. In this sense,
distributed object systems are really client-server systems. However, in terms of OLE-enabled component objects,
the term distributed object system can be more narrowly defined as a set of two or more component objects that are
running on different physical computers, but cooperating through the OLE interfaces as if they were on a single
machine. For instance, an Automation Controller could just as easily “drive” an OLE-enabled application running
on another machine as it could an OLE-enabled application running on the same machine. The Automation
Controller and the OLE-enabled application being controlled will actually be running on different CPUs, with
network transparency provided by the Component Object Model. This makes it possible to split applications or
processes into logically distinct tasks that can be executed remotely and concurrently on separate machines. Any
OLE 2.0-enabled application can be run in “client-server” configuration, even though it has not necessarily been
designed for this capability (i.e., OLE 2.0-enabled applications will get networked, client-server capabilities for
free!).

Encapsulation
Encapsulation is the technique of combining data and processing logic within self-contained software objects.
These objects hide their inner complexities from programmers and users. The encapsulated functionality of the
object is accessed through well defined interfaces made up of methods.

Globally Unique Identifiers (GUIDs)
Globally Unique Identifiers are IDs assigned to OLE component objects, and are generated through a sophisticated
algorithm. The algorithm guarantees that all component objects will get unique IDs, avoiding any possibility of a
naming conflict, even is systems with millions of objects (supplied by many different vendors). Software
developers can easily generate GUIDs for their component objects through special software provided in the OLE 2.0
SDK.

Microsoft’s Object Technology Strategy:
Software Without Limits

33

Inheritance
Inheritance is the mechanism that allows specific customized objects to be defined from more general definitions.
See also component inheritance and implementation inheritance.

Implementation Inheritance
Implementation inheritance is the mechanism that allows subclasses of objects to be defined by using general,
superclass object definitions as templates. Common data and methods are defined at the superclass level, and
additional, specialized data and/or methods are defined for each subclass. Implementation inheritance is thus
derived from class hierarchies. While useful for object-oriented programming languages, traditional
implementation inheritance should be avoided in object-enabling system software, because it creates implicit inter-
dependencies between objects. This prevents objects from being freely interchanged between different vendors’
implementations, or autonomously upgraded in distributed object systems.

Interface
Generally speaking, an interface is simply a mechanism for different pieces of software to interact. For instance,
application programming interfaces (APIs) are provided with operating systems (to access system-level services
from programming languages); database management systems (to access SQL database services); and any number
of other types of applications and system software. As defined by the Component Object Model and OLE, however,
an interface is a collection of methods, and defines a strict “contract” between objects. Objects can only access each
other through a collection of standard interfaces, and an application supporting an interface must support all of the
methods defined by that interface. The interfaces are binary standards, so users are guaranteed that objects talking
to each other through the COM interfaces will seamlessly interoperate. Because OLE 2.0 is based on COM, OLE
2.0 applications are guaranteed to work with each other no matter who programmed them, or in what language they
were programmed.

In-Place Activation
See Visual Editing.

Message
In pure object-oriented programming terms, a message is the invocation of an object’s method, and is the only way
objects can interact. When one object wants to call on another object’s functionality, it is said to “send a message”
to the object. The object sending the message is sometimes called the sender, and the object receiving the message
is sometimes called the receiver. The message consists of the method name, and any parameters required by the
method. In the Component Object Model, collections of methods are called an interface. The term message is also
often used to denote a system event, especially in GUI-based systems. For instance, a mouse-click in the Windows
environment is said to “generate a message.” This should not be confused with the term as applied to object
technology.

Method
A method is a logical operation provided by an object. Operations performed on objects are defined as “methods of
the object.” To invoke a method, an object sends a message consisting of the receiving object and the name of the
specific method to invoke. The name of the method is sometimes called a selector. Messages are the only way for
objects to interact.

Object
See Object Technology

Object Embedding
See Object Linking and Embedding 2.0.

Object-Enabling System Software
See also the Component Object Model and Object Linking and Embedding 2.0. Object-enabling system software is
software that occupies a layer between applications and the operating system, and defines a common object model
for all applications and other system software to use. Such a common object model can break down the barriers
between different objects and packaged applications, allowing them to freely interact. The operating system itself
can also take advantage of these common object capabilities, allowing better integration between application objects
and system services, including the user-interface, the file system or any computing resource. OLE is the most
advanced and widely used object-enabling system software available, and allows diverse objects to interact on a
single machine, and soon across a network. Today, OLE is available for the Microsoft Windows family of operating
systems, and Microsoft is also providing OLE 2.0 for the Apple Macintosh System 7 operating system.

Microsoft’s Object Technology Strategy:
Software Without Limits

34

Furthermore, OLE-enabled component objects will also be available on many other operating system platforms,
major versions of UNIX, VMS, and other platforms. OLE is based on an underlying object model, the Component
Object Model, which defines a binary interface standard for objects. COM provides the basic “wiring and
plumbing” for all OLE 2.0 applications, and has been designed for distributed capabilities. In addition to the
services already defined in OLE 2.0, ISVs, corporate developers and system integrators will be able to create new
types of objects and interfaces that are both source-code portable across platforms, and interoperable across a
network.

Object Linking
See Object Linking and Embedding 2.0.

Object Linking and Embedding 2.0 (OLE 2.0)
OLE 2.0 is a set of system services that provides a powerful means for applications to interact and interoperate.
Based on the underlying Component Object Model, OLE 2.0 is a breakthrough in object-enabling system software.
Through OLE Automation, an application can dynamically identify and use the services of other applications,
making it possible for corporate developers and system integrators to build powerful business solutions using
packaged software. OLE 2.0 also makes it easy to create documents consisting of multiple sources of information
from different applications.

Applications that accept objects from other applications are called containers, while the application providing the
object is called a server. Through OLE object linking, objects created in one application can be linked into
container applications. As the linked object is changed or revised by the server application, it is automatically
updated in any container applications. Through OLE object embedding, a distinct copy of the object is made, and
then embedded in the container application. Changes to the original data are not reflected in the embedded object.
Through OLE Visual Editing, embedded and linked objects can be directly edited within the container application
without switching to the server applications. Through OLE drag-and-drop, information can be selected in a server
application and dragged into a window running a container application. Today, OLE 2.0 is available for the
Windows Family of operating systems (32-bit OLE 2.0 will be available with the upcoming upgrade for Windows
NT 3.1). Microsoft will soon release OLE 2.0 for the Apple Macintosh, and through an agreement with Digital
Equipment, OLE will be available on many other platforms, including most versions of UNIX.

OLE Custom Controls
OLE Custom Controls are a special form of component Automation Objects. Custom Controls are similar to Visual
Basic custom controls (VBX’s), except that their architecture is based on OLE 2.0. This means that, unlike VBX’s, they
can be freely plugged into any OLE-enabled development tool, application, and eventually the Windows operating
system itself. These controls will be provided by numerous software vendors, and will offer packaged functionality
ranging from database access to mainframe connectivity to workgroup messaging functionality. Both 16-bit and 32-bit
components can be developed using the same OLE Custom Control source code (simply recompiling) under Windows
3.1, the Windows NT operating system and future versions of Windows. Because it is based on OLE, a cross-platform
technology, the new OLE Custom Control architecture also opens up the possibility of OLE Custom Controls being
available in the future on additional operating systems such as the Macintosh and UNIX.

Object Technology
A broad term which implies the use of “objects” to 1) analyze; 2) model or design; and/or 3) implement some
aspect of a computer system. In terms of actual application implementation (as opposed to object-oriented analysis
or design), objects are self-contained software modules that encapsulate both data and processing logic, and can
only be accessed through well defined interfaces. While the basic goals of object technology are to increase system
modularity and hence flexibility; reduce programming time; reduce maintenance costs; and increase ease of use, it is
useful to distinguish between object-oriented programming technology and object-enabling system software
technology. See also object-oriented analysis, object-oriented programming, and object-enabling system software.

Object-Oriented Programming (also known as OOP)
Object-oriented programming, as opposed to procedural programming, involves the use of both object-oriented
design, and an object-oriented programming language such as C++ or SmallTalk. Instead of consisting of sets of
data loosely coupled to many different procedures, object-oriented programs consist of software modules called
objects, which encapsulate both data and processing while hiding their inner complexities from programmers (and
hence other objects). This can make object-oriented programs more flexible and easier to maintain. Through
implementation inheritance and polymorphism, objects can be reused across multiple systems, reducing
programming time. OOP does not address the need for application interoperability, or object interaction across
application boundaries. Instead, object-enabling system software, such as OLE, is required to achieve these critical

Microsoft’s Object Technology Strategy:
Software Without Limits

35

benefits. Also, object-oriented programming need not be applied to the implementation of systems/applications
designed through object-oriented analysis and design techniques.

Object-Oriented System Analysis and Design (also known as OOA for Object-Oriented Analysis)
The process of modeling a system by breaking it down into a series of objects that closely resemble real, physical
objects. This design model is becoming particularly relevant as organizations re-engineer their business processes,
and deploy new systems to alter and improve workflow. Through object-oriented analysis and design, for instance,
a claims processing system might be modeled as a series of business processes, represented as objects such as the
claims form itself, and the different departments, people, data and tasks that need to be included in the successful
processing of a claim. Based on breaking the entire process down into individual components, organizations can
more readily detect weaknesses, as well as ways to improve and/or automate the system. Note that the use of an
object-oriented programming language is not necessary to achieve these benefits. The OLE object-enabling system
software will, however, allow organizations to deliver better distributed workflow systems because such software
enables the smooth integration of many different types of applications (including applications communicating across
a network). Such integration will help organizations to build more capable, flexible systems, and deliver these
systems at a lower cost.

ObjectBroker
A product sold by Digital Equipment Corporation that provides a mechanism for building distributed, client-server
systems incorporating objects running across multiple platforms. The ObjectBroker facilitates the network
communication and interoperability of the different objects. Digital’s ObjectBroker will incorporate the
Component Object Model, allowing OLE-enabled applications to access and use objects running on a variety of
UNIX platforms and VMS. OLE support for many other platforms is also planned.

Object Registry
A database listing the OLE-enabled component objects available on a system. It is updated whenever an object is
installed or executed. Container applications know what objects are available by looking at the object registry.

OpenDoc
OpenDoc is a specification for a compound document architecture that is being formed by the joining of several
different technologies supplied by Apple (the base OpenDoc architecture, the Bento file system and the Open
Scripting Architecture) and IBM (the System Object Model). The development effort for combining these
technologies has been split between key consortia members, including Apple, IBM, Borland, and WordPerfect.
Today, OpenDoc is still a paper specification, not available on any platform. See also, the System Object
Model/Distributed System Object Model.

Open Process
The formal review process which Microsoft uses to ensure the quality, interoperability and acceptance of new
system software innovations. The Open Process allows industry experts, corporations, OEMs, and independent
software vendors to participate in the development and direction of the Windows platform, through specification
and design reviews. OLE 2.0 was refined through an Open Process through which major software vendors
(including Apple Computer, Borland International, Lotus Development Corporation and the WordPerfect
Corporation) participated in open design reviews. Additionally, preliminary OLE 2.0 specifications were
distributed to more than 150 different software vendors for open review and feedback.

Overloading
A technique used in object-oriented systems (both in programming languages and in object-enabling system
software) whereby different object classes use the same method name even though the method definitions may
differ. This reduces the number of method names that need to be created and memorized by programmers, and
allows sub-classes of objects to by tailored to meet specific needs. Overloading can be fully used (and is) in OLE-
enabled component objects to achieve polymorphism.

Polymorphism
Polymorphism is a feature of object-oriented software technology (both programming languages and object-enabling
system software) that allows different objects to be accessed through the same interface, although each object can
perform its own custom processing when invoked through this interface. Thus, alternate processing is “hidden”
behind a common interface. For instance, overloading leads to polymorphism.

Properties

Microsoft’s Object Technology Strategy:
Software Without Limits

36

The attributes associated with a component object. For example, a chart has the properties of color and type, to
name a few. In the next version of Windows, documents, files and other objects will be endowed with specific
identifying properties which can be viewed through property sheets.

Property Sheets
Property sheets will be introduced with the next release of Microsoft Windows, and are forms that allow users to
view the properties (attributes) of objects on their desktop. Property sheets will make it very easy to access critical
information about an object (such as a file or printer), without opening the object or having to use a special utility to
view the information.

Receiver
The object that is receiving a message to act on. The receiver object invokes the method implied by the message.

Remote Procedure Call
A mechanism through which applications can invoke procedures (and object methods) remotely across a network.
Using RPC, an application on one machine can call a routine (or invoke a method) belonging to an application
running on another machine. RPC is popular because it uses a familiar approach of invoking programmed
procedures, making the networking details transparent to programmers. Microsoft is using a DCE-compatible RPC
as the infrastructure in future versions of Windows to enable communication between OLE 2.0 applications running
on different machines. Since this RPC is DCE-compatible, it will facilitate object interactions across multiple
platforms.

Sender
An object which requests the invocation of another object’s method.

Server
While the term server is widely used to denote a computer that provides services (such as file access or database
access) to client applications, in OLE 2.0 terminology a server is an OLE 2.0-enabled application that can provide
an OLE container application with objects. When dragging a spreadsheet chart into a word processing document,
for example, the spreadsheet application is the OLE server, while the word processor is the OLE container. OLE
2.0-enabled applications can be both object containers and object servers.

System Object Model/Distributed System Object Model
The System Object Model (SOM) and the Distributed System Object Model (DSOM) are object models defined by
IBM that are available for IBM OS/2® and IBM AIX. These object models offer some benefits, but they do not
address many of the important needs that object-enabling system software should address. SOM itself, for instance,
does not allow objects to communicate and be shared between different programs (even between processes running
on the same machine). To achieve these capabilities, IBM provides a different approach-- DSOM. Unlike OLE and
the Component Object Model, SOM/DSOM do not achieve local and distributed object support with a single,
integrated object architecture. More importantly, SOM/DSOM straddle the border between object-oriented
programming technology and a true system object model. SOM and DSOM allow uncontrolled implementation
inheritance: objects can inherit source-code implementations from each other, through class hierarchies. While this
can make programming SOM/DSOM objects somewhat faster, it also introduces interdependencies between objects.
These interdependencies can prevent objects from being freely interchanged between vendor-implementations, or
autonomously upgraded in distributed systems. In addition, the lack of compound document support, the lack of
robust object versioning, the lack of globally unique object identifiers , and the lack of a logical thread model to
prevent object-deadlocks are some of the other limitations of the SOM and DSOM object models. All of these
issues are successfully addressed, however, by OLE 2.0 and the underlying Component Object Model.

Visual Basic Custom Control
Visual Basic custom controls (VBX’s) are a specific form of binary, packaged objects that can
be created by different companies and integrated into Visual Basic Applications. But because
they are based on a Visual Basic interface, they cannot be easily reused in other development
tools and applications. With the introduction of OLE Custom Controls, a form of component
software, these limitations are eliminated.
Visual Control
See OLE 2.0 Custom Controls.

Visual Editing

Microsoft’s Object Technology Strategy:
Software Without Limits

37

Visual Editing, sometimes called in-place activation , is a feature of OLE 2.0 which makes it easy to create and edit
compound documents. By double-clicking an embedded object within a compound document, the menu and toolbar
of the container application will change to the menu and the toolbar of that object’s native application. This allows
the object to be edited within the context of the document (“in-place”) instead of switching between the different
applications. See also Object Linking and Embedding 2.0.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the
date of publication. Because Microsoft must respond to changing market conditions it should not be interpreted to be a commitment
on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This Document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, IN
THIS DOCUMENT. Copyright 1994 Microsoft Corporation. All rights reserved.

Discussions on Apple OpenDoc and IBM SOM/DSOM are based on publicly available information, which is subject to change.

Microsoft, Microsoft Access, MS-DOS, Visual Basic, PowerPoint and Win32 are registered trademarks and Visual C++,
Windows, and Windows NT are trademarks of Microsoft Corporation.

Apple Macintosh is a registered trademark and OpenDoc is a trademark of Apple Computer, Inc. IBM, OS/2 and AIX are
registered trademarks of International Business Machines Corporation.. DEC, VMS and ULTRIX are registered
trademarks and ObjectBroker is a trademark of Digital Equipment Corporation. HP-UX is a registered trademark of
Hewlett Packard, Inc. UNIX is a registered trademark of Novell, Inc. All other product names are the trademarks of their
respective holders.

Microsoft’s Object Technology Strategy:
Software Without Limits

38

	As evidence of its advanced design, the Component Object Model not only allows individual applications to interoperate and communicate through OLE, it also provides an object-based interface to Windows system services, called system objects. Today, these services include memory allocation, file management and data transfer. In fact, OLE forms the basis for Microsoft’s strategy to evolve the Windows family into object-oriented operating systems. Future versions of Windows will extend object-based services to include facilities such as integrated OLE Custom Controls, multimedia services, data-access services, name services, and distributed security. These object-based services will gradually become pervasive, providing easily replaceable components within the Windows operating system itself.
	The Microsoft Developer Network

